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V. THE GRAVITATIONAL TAGRANGIAN

'

1. Introduction
So far (Chapters IIT and IV) my discussion of metric-connection
theories has been limited to the kinematics of the gravitational fields
and therkinematics and dynamics of the matter. Some of this discussion
depended on the choice of matter Lagrangian and minimal coupling, but
all of it was independent of the choice of gravitational Lagrangian.
In this chapter, I discuss the choice of gravitational Lagrangian,
Specifically, I list experimental and theoretical criteria which ought
to be satisfied by a good theory of gravity. Some of thesé are easily
satisfied by choosing the Lagrangian as a scalar fuﬁction of certain
variables; for example
(i) the field eqﬁations should involve no higher than second de-
< ) | rivatives of the gravitational field variables; and
(ii) the field equations and certain differential identities on
the gravitationmal variables should guarantee that the maiter
varigbles éutomatically satisfy the Noether conservation laws,
Other criteria are straightforward bﬁt tedius to check; such as
_'(iii) the existence of a good initial value formulation; and
(iv) agreement with Newtonian and post-Newtonian experiments.
Still other criteria require a proof of the existence or uniqueness of
certain solutions to the field equations; including |
(v) the existence of a Birkhoff theorem;
(vi) the existence of cosmologicalrsolutions; and

(vii) the existence of a unique gravitational ground state.,
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At the other extreme, one criteria,
(viii) the existence of a good (unitary and rencrmalizable) quantum

theory,

-is very difficult to satisfy and has not yet been satisfied by any

proposed theory of gravity.
In addition to the theoretical and experimental criteria, I make

several aesthetic and simplicity assumptions, Eor'simﬁlicity (and to

" allow for the existence of spinors) I restrict to metric-Cartan connec—

tion theories. Skinner and Gregorash [1976] and Aldersley t1977a]
have investigated such theories under the assump&ion that the gravita-
tional variables afe the metric and torsion., Unlike their work, I use
the gauge theory analogy of Chapter II to justify thé-ass&mption:

(ix) The gravitational field variables are the components of the

| orthonormal frame and the mixed components of the Cartan
connection,

In conjunction with the_assuﬁﬁtion of second order field equations,.
this leads to the restriction of the gravitational'Lagrangian to the
sum of the Christgffel scalar curvature, R, and an arbitrary scalar
functioh,-i(gas, ﬁuBYS’ Qayé), of the_metric, the Cartan curvature,
and tﬁe torsion tenéors. This is a very diffe:ent class of theories

than those obtained by Skinner, Gregorash and Aldersley. For sfmpli—

city, I assume:

curvature and torsion tensors,
This restricts the gravitational Lagrangian to the twelve parameter

.family (derived in Section V,34d):
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It is not known whethef any of the theories in this twelve para-
meter family.satisfy all of the experimental and theoretiéal criteria
listed above (especially the quantizability condition). I comsider it
worthwhile to study all of these theories at both the classical and
quantum levels, As far as the classical field equations are concerned,
one of the parameters, él’ 2,5 OT as; is-afbitrary because of the |

"Buler-Gauss~Bonnet identity:"

4

s PV Fax=0, | 2)
" where
_ y8uv 2af ACH
P = EGBKX R ¥é R 13V
-4 (RR-4k RPan RSB,y 3)
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All of the theories in the family (1) have automatic Noether conservation

laws. Further, they all have field equations involving no higher than

H

second derivatives of the frame and connection. TIn fact, if ¢, = b

2”17
b2 = b3.= 6, then ;he Lagrangian does not depend on any derivatives of
the frame, and so the frame acts as a Lagrange multiplier, The gquantum
propagators, for the theory with A = Cy = bl = b2 = b3 = (0, have been
investigated by Neville [1978].
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" One parameter, A, may.be iﬂentified'as a cosmnlogical constant,
The Hewtonian limit should detérmine another parameter, probably éome
cozbination of the bi's and'ci‘s. In the post-Newtonian limit, it may
be possible to identify other parameters with the parameters of the

parametrized post-Newtonian formalism. (See Will [1974].)

The analeogy with the fang-Mills Lagrangian is ambiguous and has

been used to justify any of the terms::

s ] B 8 . ~ o YS o ¥8 _ o Y §
R By & R a °? R, R, Q YG'Qa ! (@ ¥é Qa 2 Q od Q ¥ ).
(4)
Cho [1976a] argues that R is the Yang-Mills Lagrangian for the transla-
tion group., On the other hand, Yang [1974] regards:ﬁaBYG-ﬁdeG as the

Yang-ﬁills Lagrangian for the Loremtz group. 3Combining these, one

obtains the Lagrangiam,

fic - fic 2o ~B v&§
L = -=5": R =~ R R s
G 16ﬂL2 16ﬂaG Bys o

(53
as a Yang-Mills Lagrangian for the Polncare group. However, in
Section 3c, I rule out this theory because it implies separate conser-

vation of spin and orbital angular momentum. The probléem may be that

Lagrangian (5) ignores the coupling between the translation and Lorentz

 groups. In Chapter VI, I study the theory with the Lagrangian,

e p _ _Be pa B S

L, =~
l6ﬂL2 16ﬂaG By T o

, (6)

ztd show that this theory has a Birkhoff theorem, has at least one

cosrological solution, and has Minkowski space as the unique gravita-

tiornal ground state. The same theory has been proposed and investigated

independently by Mansouri and Chang [1976] and by Fairchild [1977].
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In Section II.5, I argued that the Lagrangian,

de b o 0 yv8 fic ﬁa ﬁS ¥4

L.=~ 8 Q ) - (7)
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is even more appropriate to the Poincare group than Lagrangian (6).
Similarly, Hehl, Ne'eman, Nitsch and von der Heyde [1978] argue for

" the Lagfangian,

fic 8 .. ¥S o Yy & fic 20 2B v§
L,= 5 ——— {Q Q -20 Q' ) =——R R .
G lﬁﬂLz Y8 “a ad | Y 16ﬁaG By§

(8

I now discuss each of the criteria in more detail.
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2. Experimental Criteria

a, Newtonian Limit

The most important requirement for any new theofy of
gravity is that ‘it must agree with all present day experiments. Most of
these occur in the Newtonian limit when (i) the velocities are small,
(C=1; G?{-l, S=—l)

v~ 0(e), ‘ (1)
and (ii) the momentum densities and stresses are small compared to the

energy densities,

/T v 0, @

|7/ Tp0 v 06D | C®

Here Tuv are the orthonormal components of the energy-momentum tensor in
a Férmi coordinate system based on an approximate center of mass of the
system under consideration, These conditions are satisfied in the s$olar

system with e ~ 10*3. To avoid ratios, I introduce a typical length scale,

R, so that

2 2 '
6T 0(e™)/r%, : (4)
Gr_ ~ 0(e)/R%, - ()

'GTjk ~ 0(e*y /R, _ : (6)
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To éay that a theory has a good Yewtonian limit means that it is
possible to consistently assign orders to each of the components of the
gravitational field and to identify one gravitational wvariable as the

. . 2 . . "y
Newtonian potential, & ~ (0(e”), so that the Newtonian equations of motion,

x=-Vd, _ (7

-are satisfied to 0(52)/R and the Newtonian field equation,

2 —
Ve = 4meT__, - (8)

is satisfied to 0(82)/R2. Equation (7) describes how a massive, spinless
and rotationless , point, test body behaves in a gravitational field, while

equation (8) describes how the matter produces the gravitational field.

Boundary conditions are specified so that far away from the system of interest,
or € = 0, spacetime is empty, the metric is Minkowski and the defect tensor

vanishes.

In Cor. IV.1l of Sec. IV.4, T discussed the motion of massive, spin-

less and rotationless, point, test -bodies in the context of metric-Cartan

connection theories whose matter satisfies the Noether conservation laws

(IV.3.1) and (IV.3.2). I showed that in these theories, these test

_ bodies move on geodesics of the Christoffel comnection, just as they do in

Einstein's theory. These results are independent of the choice of gravita-
tional lagrangian or gravitational field equations. Hence for any metric-
Cartzn connection theory, just as for Einstein's theory, equation (7) is

satisfied to O{EZ)IR provided the Newtonian potential is identified as

=3 (g, + 1)+ 06D, (9)
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and the components of the metric are assigned the orders

Bpo =~ L - 20+ O(_eA), | ' 7 (10)
- 3 _

B =0C, | Can
B L2

gjk = sjk 7+ 0(e ).. a2

This is independent of the orders assigned to the cémpbnéntsrqf the tdrsion;

To checi that equation (8) is satisfied to O(GZ)IR, one expands the
gravitational field equations in poweérs of ¢ and verifies that'equatioﬁ (8)
appears as.some combinatioﬁ of these equationé. Tﬁis requires the gravité—
tional Lagrangian of the particular theory and, as far as I can tell, must
be checked separately for each new theory.

One must also check the consistency of the assignment of orders to the

gravitational variables. To do this, one assumes the assigned orders, uses

the gravitational field equations to compute the gravitational variables in
terms of the matter variables appearing as sources, and verifies that the
gravitational variables have the assumed orders. As far as T can.tell, this

must also be checked separately for each new'theory.
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" b. Laboratory and Solar System Experiments

In addition to the Newtoniaﬁ experiments, a new theory of
gravity must also agree with the experiments designed to check general
relativity. The analysis of-these expériments may be divided into_answering
two questions about the predictions of the thepry:

_ti) What gravitational fields are present in these experiments?
(ii) How does matter move in these gravitational fields?
The answer to question (i) depends on the gravitational Lagrangian or
gravitational field equations of the particular theory. However, the answer
to question (ii) is independent of the choice of gravitational Lagrangian,
although it does depend on the choice of gravitational variables and the
method cf coupling the graviiational field to the matter Lagrangian or matter
equations of motiomn.

Since it is simpler, I discuss question (ii) first. All present ex-
beriménts measure the motion of either light waves or massive test bodies
with no net microscopic spin. In Cor. IV.3 of Sec. Iv.4, I discuséed the

motion of these types of matter in general gravitational fields in the context

‘of metric-Cartan connection theories whose matter satisfies the Noether con-

servation laws (IV.3.1} and (IV.3.2). For such theories, I showed that

"in a fixed gravitational field, light waves and massive spinless test bodies

ﬁove in the same manner as they do in Einstein's theory. Hence, if Einstein's
theory and a metric-Cartan connection theory predict the same metric field

for a given experiment then that experiment camnot distinguish between the

theories.
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This brings us back to question (i). .For some experiments (e.g. the
gravitational red shiff-of light waves and the uniquenéss of free fall for
m=ssive bodies) the gra;itatibnal field i1s essentially Newtonian and so is
the same for any theory of gravity with a good Newtonian limit.

lOthgr experiments (e.g. the defléction-and time delay of light by the

sun, the precession of the perihelion of planets, and the precession of a

gvroscope} measure the non-Newtonian aspects of the gravitational field.

For these experiments the gravitational field must be investigated separately

for each new theory. However, there is one shortcut.

For every experiment so far performed, the reievant gravitational fiéld
consists of Newtonian and post-Newtonian contributions from the sun and
Newtonian contributions from the planets. These expéfimenté are consistent

with the statement that the metric in the solar system agrees to post-—

Newtonian order with a Schwarzschild metric centered at the sum except for

non-spherical but Newtonian perturbations due to the planets. Consequently,

a new theory with a good Newtonian limit will also agree with these relati-

vistic experiments if

(i) the theory hasra Birkhoff theorem, i.e. the theory has a unlque
spherically symmetric vacuum solutiom,

(ii) the metric in this sphericélly,symmetric vacuum solution agrees with
the thwarzschild metric to post-Newtonian order, and

(1ii) this spherically symmetric vacuum solution is stable under non-
spherical perturbationms.

Raquirement (i) guarantees that there ié no ambiguity in the experimental

preéictions of the theory. 8ince the measured non—sphefical perturbations

are Newtonian and the new theory has a good Newtonian limit, requirements
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(i) and'(iii) guarantee that the predictions of the theory égree.with
present experiments.

Thus, experiments using light waves and massive, spinless, test bodies
can only be used to distinguish between a theory satisfying these_con?
ditions and Einstein's theory if they measure either
(1) the terms in the spherically symmetfic metric of higher than post-

Newtonian order, (this will not produce a distinction if the unique

spherically symmetric vacuﬁm,solution of the new theory has precisely

the Schwarzschild metrie.) or
(ii) the non-Newtonian, non-spherical perturbations to the spherical metric.
For metric-Cartan connection theories, it should be possible to analyze these
experiments within.the parametrized post-Newtonian formalism since the
theo;etical predictions only involve the metric. The PPN-parameters for
these fhgories should be calculable from thgi? gravitational field equations.

To go outside of the PPN~-formalism and measure torsion effects, one
would haye to perform experiments using massive bodies with a non-zero net
microscopic spin such as a ferromagnet or neutron star. As discussed in
Section - IV.5 , even these exﬁerimentsrdo not seem prcmiéing with present

technology.
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c. Cosmological Observations

In addition to agreeing with the Newtonian and relati-
.vistic experimenfs, a new theory of gravity should be compatible with
the'cosmologicél observations that the universe is essentiéily homo-—
geneous'and iéotropic'on a_large scale, is expanding, and has a 3°K
black—body spectruﬁ of background microwave rédiatioq._ This require-
- ment will be satigfied if the theory‘admits spatially homogeneous and
isotropic solutioﬁsAfor reasonable gquafions of state which are

expanding from a dense hot state.

Lt
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3. . Theoretical and Aesthetic Criteria

a. Initial Value Formulation

 Any physical theory should have a good initial value formulation:

(i) It must be possible to divide the equations for the theory into éonstraint
equations satisfied by.the field variables at each instant of time,
and evolution equations relating the field variables at different times.
(An instant of time is simbly'a 3~dimensional spacelike surface.)

(11) The evolution equations must guarantee that if the constraint equgtions-
are satisfied at an initial time, then they are satisfied at all nearby
times.,

.(iii) The theory must be consistent in that there must exist at least one
solution to the constraint equations, or equivalently, at least one

solution to the full theory.

~Any gauge freedom in the theory shows up as_a:bitraiy gauge functions:in,the

evolution equations.

The existence of a good initial wvalue formulation for a theory implies
that predictions can be made from the theory. Specifically, if one knows a
certain amount abeout a system at the present time, namely the initial data,

then one can predict what will happen to the system for some time into the

. future. Each set of initial data, sétisfying the constraints, can be evolved

into a full solution of the theory which is unique up to the choice of the

gauge functions. For sufficiently simple systems, this technique for creating

sclutions can be used to model the behavior of the system on a computer.

The decomposition into evolutiom and comstraint equations can also be used
te count and in principle isolate the dynamical degrees of freedom. Roughly

s

e

zzving, some field wvariables can be expressed in terms of the gauge functions

and so are arbitrary functions of time. Other field variables can be regarded
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as.the solutions of the constraiqt equaﬁions and so are completely determined
in terms of the remaining variables. Qualitatively, these cgnstraiﬁe&
variables describe the C;ulombic aspects of the theory. The remaining field
variables are the dynamical degrees of freedom which may be freely specified
at the initial time and then uniquely'evolvéd in time. Qualitativeiy, the
dynamical degrees of freedom describe the wave properties of the.theory.

In a frame-connection theory of gravity one Woﬁld‘like tp know how many
and which of‘the framg and connectionVQariables are dynaﬁic.

The isolafion of the dynamical degrees of ffeedom is a uéeful step in
the canonical quantization of a theory since it islonly thgse variables which
should be quantized. Canonical quantization also requires.that the initial
value fo;mulation is canonical in that the dynamical &egreeé of ffeedoﬁ form
a phaée.spaée and their évolution quations are in the form of Hamilton's

equations. The standard way to put a Lagrangian or Hamiltonian theory into
a canonical initial value form is to apply the Bergmann-Dirac procedure.

. When applied to a Lagrangian thgqry the Bergmann-Dirac procedure.assumés
that the Lagrangian contains no higher than first time derivatives of the
variables. This can always be achieved by introducing new variables and
Lagfangé multiplies. Unfortunmately, the new variables may not have the physical
or geometrical relevance of.the original variables. In Einstein's theory, the
second time derivatives of the metric are eliminated from the scalar curvature

Lagrangian by the addition of a divergence.
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b. Second Order Field Equations

Throughout this section, when I refer to the gravitatiomal
field equations, I mean the Euler-Lagrange equations obtained by varying
the Lagrangian with respect to the appropriate set of gravitational
variables.

It is standard to assume that a theory of gravity should satisfy
the condition:

(i) The gravitational field equations-involve no higher than second

derivatives of ﬁhe gravitational variables.
Notice that this condition is vacuous unless the gravitational variables
are specified since it is always possible to define new variables as the
derivétiﬁes of the old variables and to derive these definitions from
the Lagrangian by introducing Lagrange multipliers.

Many authors (We&l {1919,211, Cartaﬁ [1922, 23, 24, 25], Sciama
[1962], Kibble [1961], Hehl [1973,74], Trautman [1972a,b,c,732], etc.)
have investigated metric-comnection theories which satisfy the condition:

{ii) The gravitationai field equations involve nb higher than second

derivatives of the metric, 8ap° and the defect, Aabc' (The
defect may be replaced by the‘torsion, Qabc’ and/or the covar-
iant derivative of the metric, Vagbc.)
Skinner and Gregofash [1976] and Aldersley [1977a,b] have found all such
theories with a me£ric—compatible connection.

I find an entirely different class of metric-connection theories by
requiring them to satisfy the cbndition:

(iii) The gfavitatioﬁal field equations involve mno higher than sec-

ond derivatives of the components of the orthonormal frame, .
o

' . . a
8 2’ and the mixed components of the connection, T Ba
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As discussed in Section II.4, I-fegard these variables as the most anal-
ogﬁus to the connection in a gaﬁge theory.

The usual justification.for making an assumption such as (i), (ii),
or (iii) is that it is necessary to a good initial value formulation.
T do not pelieve such an assumptiog is necessary. However, 1 assume

(iii) anyway because it makes the mathematics simpler and cuts down on

the number of possible gravitational Lagrangians. There are still a

very large number of Lagrangians satisfying (iii).

At the end of thissubsectionlfprove two Eheorems which show that
there is a large class of Lagrangians which satisfy (iii). but do not
satisfy (ii). These theorems only apply to gravitational Fheories with
a Cartan comnection. To understand these theorems, one needs the defi-
nition of a strictly local function.

To say that f = f(gi) is a strictly local function of the functioms,

'gi, means that the value of f at a point, x, in spacetime depends only

on the values of the gi's at the point, x. It is independent of the

"wvalues of the gi's at any other points and independent of the derivatives

of the gi's at x.

Theorem V.2 shows that if the gravitational Lagrangian is a

- strietly local scalar function of the metric, Cartan curvature,‘and tor-

sion then it satisfies (iii).. Notice that the gravitational Lagiangian
does not even need to be a polynomial. In contrast, Skinner and Gregorash
have shown that such a Lagrangian will not satisfy (ii) unless it reduces
to a linear fumction of the Christoffel scalar curvature when the torsion

is set to zero.
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(ﬁg Theorem V.2 also shows that a gravitational Lagrangian which is
a strictly local scalar function of the métric, Cartan curvature, and
torsion alsé satisfies the conditién:

(iv) The gravitationai Lagrangian is a strictly local scalar

. o a o8
function of © a® BCB a’ P'Bc’ andradr Be.

Condition (iv) implies (iii). However, (iii) does not imply (iv)
because, for example, the Christoffel scalar curvature (i.e. Einstein's
Lagrangian) satisfies (iii) but not (iv).

I wish to conjecture two conﬁerses to Theorem V.Z2. First, it may
be that any gr;vitational Lagrangian satisfying (iv) must Be a strictly
local function of the metric, Cartan curvature, and torsion. Second,
it may be that any scalar gravitational Lagrangian satisfying (iii) must

be the sum of a multiple of the Christoffel scalar curvature and of a

.'/f\-

stricﬁly local functioﬁ of the metric, Cartan curvature, and torsion..
I ﬁave not yet tried to prove either of these conjectures.

fheorem V.l deals with a sgallgr class of gravitatiomal Lagran-
gians, namely those which are stfictly local scalar functioms of the
metric and Cartan curvature only (né explicit torsion). These satisfy
two conditions:

(v) The Einstein equations (variation with respect to Baa) involve

s a - . . . .
no derivatives of © a and no higher than first derivatives of

)

o ' . — .
T ge’ The Cartan equations (variation with respect to Pch

. . . . . o
involve mo higher than first derivatives of 6 a-and second

. . o
derivatives of T ac

(vi) The gravitational Lagrangian is a strictly local scalar

, and 3.7 .

N o o
: function of © g’ T &’ ge

Be

P
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Condition (vi) impligs_(v)._ I cénjecture that any scalar gravitational
Lagrangian satisfying (v) also satisfies (vi) and that any gravitational
Lagrangian satisfying (vi) mﬁst be a.strictly local scalarrfuﬁction
of the metric and Cartan curvature. I have not tried to prove these
conjectures.

Theorems V.l and V.2 ‘also show that if one wisheg to regardigab

and Qa (or 22 ) as the independent variables insfead of 8% and r'*
i be be : - : a Ba,
then one obtains an equivalent set of field equations although they
contain higher than second derivatives of &1 and_Qabc.

I conclude this subsection by stating and proving the two theorems

I have been discussing.
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Theorem V.1:
Suppose the gravitational Lagrangian, Le » is a strictly local, scalar
funetion of the metric and the Cartan curvature tensors. Then the Lagrangian

density,

(4

= /=3 R 1
Lo = B Lol Riyeg)s | 1)

‘ig aq strictly local function of any of the following sets of variables:

£G - £é(gab’ 8Bab? aldacga].:v’ Qabc’ ‘aanbc) ? | (2)
°CG - £é(gab’ % .8ab’ -adacgab' Aa;bc’ »ad)\ébc) ’ , (3
Le = “cg(eaa’ .aceaa_’- adacema’ Qaﬂy’ aansy) ’ - (4)
°CG = °cg(eaa’ acema’ adaceaa" ;\usy’ adkuBY) ? (5)
e =£é(eaa’ er 347 ge)- . | ) ®

Further, equivalent sets of vacuum field equations are obtained by

varying &.h and Qabc in ,{Zé, b and )‘abc in J,‘é, Oua and QGBY in
3 a @ . 4 o . 5 '
°CG’ @ a and x By in "CG’ or 8 a and T g "CG' Furthermore, the
£?; variations may be computed from
!5 - .
84 1L
G Wy a8 ap G a
= vy-g |2 e R , 4+ e L.}, (7)
680 [ U oV g P o G}
a guv
8L L
g = 2 /—g v a 6 e ¢ evd '
5% RS M (8)
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Frcof:
. P, a ) ' .
In a coordinate basis, Ba and dx , the Christoffel connection,

cefect tensor, Cartan connection, Cartan curvature, and metric deter-

rminant are

a . _1 ad o .
ot =78 (Bp8ae © 28y 348pe? ? )
a -_ 1l ad e e _ e .
Me T2 8 BpeQ ge * Bee apBael be! (10)
L S D : (11)
be = be be
~a =3 I,a -3 I,,a ra e a e . (12)

bed - %l ba T %  bet Tect ba T T edl be

5 - , | - (13
g=det gy | :

An examination of equations (9) through (13) in conjunction with equation

(1) shows that i% is a strictly local function of the variables shown in

equations (2) and (3).

Similarly, in the orthonormal bases, e, = eaaaa and'BOL = e“a dxa,
substituting

8ab ~ ap eGﬁa eBb ? | | . t14)

S S L A | (15)

I L S . (16)

inio equations (2) and (3) yields equations (4) and (5).
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Since L. is a scalar, it is independent of the choice of frame.
Hence, it may be regarded as a strictly local function either of the

coordinate components of the metric, 8.p? and the Cartan curvature,

~a

R bed® OF of their orthonormal components, 88 = Mug = diag(s,-s,fs,ws),
~0t . . .
and R Bys” Since the gaﬁ are constants, LG 1§ a strictly local
_'functioﬁ of ﬁnga only. Hence,
s o :

. . o
In terms of the mixed components of the Cartan connection, T Be? the

mixed components of the Cartan curvature are

A0, _ o a o £ o e
R =9r% -3 + -
Bed ¢ Rd -dF Be r ecr gd T edr Bc’ (18)

so that the orthonormal components of the Cartan curvature are
a R . . (19)
Byd y 8 fcd
The determinant of the coordinate components of the metric may also be

written as

g = (det g o) (det 8% )7 = ~(der 0" )% (20)

An examination of equations (18), (19)_and (20) in conjunction with
equation (17) shows that.£G is a strictly local function of the variables

shovn in equation (6).

The vacuum field equations for:ﬁé are

sl a2 ant sLx |

G _- G G G . (21)
Sg . &g . % 3 g. T %4% 33 3 g =0, '

ab ab ¢ ab d ¢®ab
3 1 1

= -3, — = 0 (22)
. .a a a ' :
°Q be 3Q be ' BBdQ be



for J.'g are
aé aatg aﬂé o a£é
| = -3 = +8.8 e =0,
Ggab Bgab. c aacgab' dc. aadacgab
5,42; N 32
= G - a G - 0 -
a, .d a - ’
A" be oA be aardx be )
for '£g are
A #
o " T 0 « F acla " 0,
89 ag® €358 C 33,5 0
a a a dec a
5L Al al3
6 __6G = N
c ..o ad a =03
8Q By 3Q By . BBdQ By
for ocg are
4 4 4
5"0?; g e alg
. = e T 8 " + ada o = 0,
Y- 86 S 3300 ¢ 33,36
a a a d¢c a
4. 4
o o d a S0
ERY 99 A
8A BY By d By
znd for oCZ are
£l
o B o I
(Y5 88
a a
- 5
) 3°£(5; 3J3G )
o = o - 8d a =0
&7 8e aT Be aadr ac
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(23)

(24)

(25)

(26)

(27)

(28)

(29}

(30)
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The equations obtained by varying g or ¢ are called Einstein equations,
while those obtained by varying Q, A or T are called Cartan equations. The
various-sets of equations may be related using the chain rule as follows.

First, the variations of ig and éé may be related using
e R AT - AN L _ (31)
(32)

where by definition,

K 0T 1,k 0 .1 K .0 .T KO T Kg T
S =5 & & -6 & § - 8§ + §°3y.
uvp 2( oV o o ‘u v T B By Y TE By v :
(33)
By chain rule
RV AR SR o . 93 O
G __G TR ' q By (34)
o K o d K o
A ? oA 39 88,2
8 By Q uv By qQ uv d” By
“ L,
= 2 s"m‘f . (35)
8Q v :
This may be inverted to give
sL3 4
&L
S _ g TDD—TU‘BY , . (36)
)
Q By oA ot
where by definition,
P By _1 PB Y PB Y _ <P B .Y L
T aTo 4 (gca & 61 t 8o & 60 6& 50 6T
_ Y B _ Py B P LY B
By & OS¢ "B B S 7 Su Sy GT). (37)
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Since the formula (31) for Qva in terms of Apor is independent of 6% .

¢l

sl N
¢ _ ¢ | (38)
56 5%
a a

Thus the °£g equations are satisfied iff the¢£é equations are satisfied.

Second, the variations of 49 and £3 may be related using

G G
_ P .0
Ers - Byg ¢ rds> ‘ (39) -
_ P g, P o '
apgrs gpo[(ape A r(ape s _ (40)
_ " 4P U P a : p g p c
P = 9.0 B 6 + (3.8 a8 + +
: 5 q%pfes Bool Calpt e + (087 03,07 + 0 0% Do 6%+ 6 067 1,
T - r.o .T é (4L
e =% 80 ¢ Uoro ' (42)
o T r.o T p a(epregseTt) ’.n 0
H . = - - . 43
k“ . apQ st ep ¢ sB t apQ a1 + n o (?pe h) Q oT (43)
. 36 n :
By chain rule,
‘ 3 1 1
8 Y
£b _ a‘£G agrs &fé 'aapgrs G aaqapgrs
T g « T o 35 5 8 '
Ge,a rs 089 a p-rs 296 qg p-rs 36
1 r
se- ot AL 33 Q
+ G dSt + G - g st
2Q st a6 a da_0Q st 99 a
1 ‘ ' r
3 Bib' aapgrs + a£é' aaqapgrs + 84% ) BBPQ st
30_g o - 99 8. g o T o
p°rs 99 6 a q p°rs aace a 339 _Q ot BBCB a
. oLl 3 3g )
{ G q pSrs )
T 2% 22%pErs 25 5 o (44)
4P dec a
kﬁ' &ﬁé' B &ﬁé a P T r a
-2 g 1, ag Op * -GQI (2052 @ pt ~ % st )» (43)
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. T i T
£ 5d W, w ugd,

-5
d r o (46)
aapQ ot BadQ By
sof o s~ t (47)
Q
st
These may be inverted to give
3
64%- _ 1 64% 0% cb + &£G G& ea' rb _aé 96 rb aQa 'y
ég T2 o ¢ & o 2 & S Q By r® -©g &y’ ?
ab L] §Q 8
@ v (48)
G 6£g o b c ,
= . . (49
5Q° 5Q™ Ta % Sy - “2
“be BY '

Thus the-J% equations are satisfied iff the ‘£g equations are satisfied.
Note that the antisymmetric part of equation (48) is an identity
which expresses the fact that.ﬁg is independent of the choice of ortho-
normal frame. It may be derived by a technique similar to that used in
Section III.5e¢ to derive the comservation laws via Noether's theorem.
. 1 2 4? 4 . .
Replac1ng,£G bygﬂG, G by £G and Q by A in equatiomns (39) through
(49) shows that the<£¢ equations are satisfied iff thegﬁé equations are
satisfied.
' ) 4. ) . ' 5
It remains to prove that thecﬁc equations are equivalent to the,cG

. . 5 R . . :
equations and to derive the.ﬂG equations. It is first necessary to express

r*  in terms of 8° and A%, . The commutator functions are defined by

8¢ a By

[e,, e1=2c% e,
B’ Ty BY o (50)
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so that

o

. l\) L)
c

B

W m _n . @ :
6'}’)&11' e, un‘e n " 6D

RN
BY (6g éY Ny

The ofthonormal,components of the Christoffel and Cartan connections are then

{DU%}-= % épn(scKcKnT +:gTKCKn0'; gnK CKQt) J — (52)
=2 Tpcrxev eum evn BneKm ’. (33)
chr = {pUT} *+ ApdT (54)
=2 TDGTK”“ eum ev“ aneKm + xpgf , e ' (55)

P HV

where T,OTK is given in equation (37). Hence the mixed components of the

~Cartan connection and its derivative are,

P LT P
RS RN 6
- P PV,T m _n K T .p
2T "ore 0% S % O Mo : (37)
a1 =21 Mot eMe®a g gf
p ot OTK t u v Pn m
T m _n
a(e e e ) NNy oK
L2 WY LT (ape h)ane o
OTK aen
h
p T T p
T AN LI (59)
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Thus the £g equations are satisfied iff the "Eé equations are satisfied.

(18)

Finally, using chain rule and equations (29), (30),

(17, (203,

and (19),
5L — 5L aR°
g _ 3 ;g LG + ‘/;g .\G acﬂJV
56" 58 oR? 98
a a auv a
V- a Ap 'aLG a
=—g[23 Rc\)a o +ea LG’
ok
ouv
5£5 3L oR oL aR
- e g e T
T Be oR Fuv aT 8e oR ouv BBdI‘ Be
oL
=2 VgV G e e d
d A0 u v
aR ™,
T Buv

Q.E.D.

(66)

(67)

(68)

(69)
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Suppose the gravitdtional Lagrangian, Los 18 a strictly local, scalar

funezion of the metrie, the Cartan curvature and the torsion tensors. Then

The lacrdangian demsity,

- ~a a
Lo = B iglegy Rpear Tpods

(70)

i sirictly loeal funetion of any of the following.éets of variables: -

1, & a
Yo ™ LelBapr 2eBap> 2PcBary Ve 20 b

_ 2 . ' a a .
Le '£G(gab-,3cgab’ 'adacgab’ Mper g bc)’

_ p3,.0 o a a o
£é <£G(9 a’ BCB a’ adace a’ Q gy’ 3dQ BY)’
) _ pb,a o o a B o
£ —¢£G(a ar 3.9 o 843,.0 _» A By’ 841 BY),
£,=L20%, 2.0%, 1%, a1t )
G G a’ "¢ a’ Be® "d" Be’”

(71)

(72)

(73)

(74

(75)

Further, equivalent sets of vacuum field equations are obtained by va:bying

a . 1 a . a2 o o . 3 o
gabmdqbcm“cc” gabandxbcan ,cG, eaandQBY_w £G’ & and

o . 4 o v3
A gy °CG’ or 8° and T

be computed Jrom

RBe

sl (51, oL
C —vF 2y |[—E—c®cfl12e?¢f &
s c BQu u v u e BQp
Y a v Hv
ax» aLG a
+2e Rpcva - e L, |,
aR”
ouv
&2 AL
& =/§g |27 AG e ®e d + e c(§p68 --ng
6?a d BRQ u v u o v
Be. Buv

a

in J,’g . Furthermore, the «Cg variations may

(76)

(77)
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Proof:
The proof is essentially the same as that given for Theorem V.1. So
I will only list the changes:

(i) Equation (17) is replaced by

_ = a o
Lo = FELR s Q) - (78)

(ii) To see that £b is a strictly local function of the variables shown

in (75), the torsiom must be expressed as

. S
Q By r Y8 r c o (79

b a c_ o HRY; VIR m 1 o
= T - T ~ (886" - 865 3 8 .
e T yb 7 8 T ge ™ (88, — 658 0e me B 8y (80)

(iii) Equation (29) is replaced by

6£5 3135 a£5 . :

(¢ G G
e T a "% a "° - (81)
§e a 38 33,0

(iv) The term,
e T & ¢ : o (82)

must be added to equation (60) although equation (61) remains unchanged.

(v) Finally, equations (66) through (69) are replaced by

5 : ApD
&L oL 3R
2 - d¥=% LG + /:E- G ouv
85 ag® aRP a6 -
a a ouv a
p ¢} . '
3L 30 3L 99
- G S v . G v
V- — riml L = (83)
aQ” , 8e%, aQ”, 938", :
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BLG a c a aLG
=vV-g |2V e e +2e Qp
T e aQa u v u Vo BQp
uv n
a ap aLG a
-+ 2 % Bova a0 +e, L » - (84)
; aR ,
cuv
Ap - p
|
5L . U
st ® o ar™ ° aQ®  ar®
Bc ouv gc uv Be
‘ . 20
oL oR
= G . : )
-3, |1E v o (85)
o ouv BBdF Re
oL oL
= /=5 |2 Vd AS e © evd + e C(SQSE - ngg ) ©
ok u 1 ¢4 Vo an
" Buv Hv
(86)

Q.E.D.
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c. Automatic Noether Conservation Laws, But No
Additional Automatic Conservation Laws
To say that a theory of graﬁity has automatic Noether
conservation iaws means that the gravitational field equations to-
gether with certain differential identities on the gravitational

variables imply that the matter variables satisfy the Noether con-

servation laws even if the matter field equations, energy-momentum

tensor and spin tensor were not derived from a matter Lagrangian.
When there is a matter Lagrangian, LM’ then the canonical energy-

a . . a
momentum tensor, ta , the canonical spin tensor, SBu , and the Euler-

Lagrange tensor, L(X)’ are defined by
| _ 5£M— _
~-sV/Ege? = , (87)
a o
) 88
a
-sf-‘g‘%SB“M” , (88)
o st®
Ba
GJ%
/:EL(X) =—'—(X‘)— . (89)

Here ‘ﬁM = V- LM is the matter Lagrangian density. In a metric-Cartan

connection theory, if LM is a scalar and the matter field equations,

L =0, ' (90)

. s ! a . .
are satisfied, then t and Ssd satisfy the Noether conservation laws:

R+l

o BYS o Y8’ - (91)

a5 o £ (92)

a " Bu Bal”

(See Section III.5.c)
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In this subsection I show fhat'the Noether equations (91) and (92)

may be rederived without using equations (87) throughr(go)f Instead,

-

-

assume that tm‘a and S aa are defined phenomenologically and that the

gravitetional field equations of the metric-Cartan conmnection theory

mav be written as
’ N S (93)

o= - R TS

where Eaa and C aa'depend only on the gravitational variables. T refer
to equations (93) as the Einstein equations and to equations (94) as

the Cartan equations. I call Eaa the Einstein field temsor and call

B a

C o the Cartan field tensor. Supposé Eda and CBaa satisfy identities

of the form,

o " ByéS o y§ ° | - (95)

a _ '
VaCBa 2 E[Bu] . | (96)

Then (91) and (92) would follow from (93) and (94), and the theory

-would have automatic Noether conservation laws.

When are (95) and (96) satisfied? I will deal with the casé when
EGa and CBGa are defined by

s/ gE® = c | (97)
. ' sg% .
a
8L
s ¢::j%-c3 a,_CG_ | (98)
(4] o
8T
Ba

where L = v-g L is a

Lo gravitational Lagrangian density.
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One special case has L, = - § - ﬁcz R where R 1is the Christoffel
1énL
scalar cﬁrvature. Then E = = fie G a’ and 08 & = 0, where G . is the
o 8ﬂL2 o o] of

Christoffel Einstein curvature tensor. In this case equations {95) and

(96) reduce to the identities
veET=0 , G[ba] =0 . (99}

The second case I consider is treated in the following theorem.

Thecremn ¥, 3:

I7 the gravitational Lagrangian,

Lo = L0 s 397, Tgus 3%, ) (100)

ig a scalar function, then equations (95) and (96) are satisfied and the

‘theory has automatic Noether conservation laws.

The proof is almost identical to the proof of Noether's theorem
(see Section IIT.5¢c) and will not be given here.
Since definitions (97) and (98) are linear in LG
B

and.(96) are linear in Eua and C aa, Theorems Vv,2 and Vv.,3 dimply that

and equations (95)

the Lagrangian,

Tic

L = -5 —
16wl

G

= . F sa a

provides automatic Neether conservation laws as well as second order

fieid ecuations.
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I would also like to impose the céndition that the gravigational
field equations do not imply any conservation laws other than the Noether
coﬁservation laws. Unéortunately, I am unable to formulaté this con-
“dition érecise;y. The best I can do is to give an example. Consider the

gravitational Lagrangian,

fic ~ fie  aq _ﬁB_YG )

= - 5 -
L lﬁﬂLz R l6waG Byé T a

(102)

:This differs from the Lagrangian considered in Chapter VI only in that it

uses R instead of R. For Lagrangian (102),

_ fic = He At «By _ 1 20 _ aB y§ '
Ev="7 G0 *® oo B Ray " 58y Rgs Bg )» 103
8wl G
¢ a _ _ fic a0 ab - ' -
o i ol S I - (104)

satisfj (95) and (96) and hence there are automatic Noether conservation

laws. But théy alse satisfy the identities,
E = 0
[uv] s . (105)

o a fic ~a ab
= =5 e
'vac " Zro VLR g

0. ' (106)

Using equations (93) and (94) this says

a _ . ’ !
VaSug = Frag) =0 (107)

i.e. there is separate conservation of orbital and spin angular momentum.
This is undesirable. Hence, I rule out the theory of gravity based on

Lagrangian (102).
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d. Qﬁadratic Polynomial Lagrangians
The gravitational Lagrangian (161) describes a very large
class of metric—Cartan connection theories of gravity. One can reduce
the number by requiring the gravitational Lagrangian to be a polynomial
in §GBY5 and QGBY' In this subsectiqné I find and discuss the most
" general gravitational Lagrangian which is a qﬁadratic polynomial in
ﬁgBYa and QuBY plus a multiple of:the Christoffel scalar curvature, R.

Thus, I assume the gravitational Lagrangian has the form

LG=—ﬁC2A—5 BE (e R+ ¢, B)
8nl 16%L :
‘ ‘ fie ,eBySkiuv 3 o
+-161r A Rusya Rkluv

_ s il Bayﬁxuv Q

. ' 108
16wL2 ruyﬁ Qzuv ( )

"Here (i) A is a cosmological constant of dimemsions ( length )—2,

(ii) L = (_ﬁG/c3 )% is the Planck length, (iii) ¢y and c, are

dimensionless coupling constants, and (iv) AaByGKluv and BayGKuv are

dimensionless tensors constructed solely out of the metric. The problem

aBySkAuv

is to determine A aYGKuv.

and B

Since the Cartan conmection is metric-compatible, the Cartan curvature,

-

RaByG’ is antisymmetric in (0B) and separately in (y§). Hence, it is

sufficient to assume that AngaKluv is separately antisymmetric in each

of the pairs (aB), (y8), (kA) and (pv) and symmetriec under the quadruple
interchange of (ofyS8) with (kAuv). Similarly, Quyé is aniisymmetfic in
oy Skuv

(v3). So it is sufficient to assume B is separately antisymmetric

in (v¥8) and in (pv) and symmetric under the triple interchange of (ay§)

with (kuv).
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aydkuv

BydkApv (resp. B*Y° ) must-be constructed solely out of

Since A"
the metric, it must be a homogeneous polynomial of degree four (resp.

three) in the metric, gpd, where in each term the indices oBySkiuv

(reép. aydkpv) . are permuted among the g's. There are relations among

the coefficients due to the symmetriés of AQSYSKAuv (resp. Bay&muv).

Thus AgBYéKluv (resp. BuYSK“v) is a linear combination of certain in-~

dependent polynomials. These independent polynomials are derived and

‘listed in Table V.1 (resp. Table V.2 )i The method of computation is to

write dovm four (resp. three) g's and to successively add indices in all
possible independent positions, antisymmetrizing when necessary.

Thus, the most general form of the gravitational Lagréngian {108) is

Lé = _ -ﬁc2 L- s ﬁc2
8nL 1675

(cl R + c, R)

_ He ~oa - ~RS a ~ofys
+ Tew (al RR+ a, RBG R 4+ aq RdBYﬁ R

~ 565 AYaaB FS aaYBB
+
a, R._.R "™ + ag RGBTG R + a6 RGBY5 R )

- s ﬁcvz (bl Qa
1675

vy & o v8 o a v &
QG Q Y + b2 Q Ya Qa + b3 Q‘Yﬁ Q o )' (109)

There is still ome relation among the quadratic Cartan curvature

scalars. Consider the scalar,

vouv acpf AKA

P = €uaen © R - R W
A A A~ ABu .\[x,B A'YG 7
= - - + .
4(RR - &4 RGB R R v6 R us) (110)

On a 4-dimensional manifold, the integral,

f P V-§ d4x , (111)
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isla topological invariant related to the Euler charactefistic. As a
topologiéal invariant, this integraL is invariant under continuous
changes in the metric or connection. Hence the.addition of any multiple
of P to the Légrangian cannot change the field equations. (The usual
argument that P is a total divergence is only valid when sPacefime is
contractible; i.e. topologically R4.) Comparison of (110) with (109)
a;» 8, or as is arbitrary.

I now proceed to discuss the class of theories based on the
gravitational Lagrangian (109). By investiggting the Newtonian Iimit
for these theories one should be able to determiqe one parameter and put
limite on the remaining parameters. Since the Newtonian gravitational
constant, G = L c3/ﬁ, only appears iﬁ the scalar curvature angd quadratic
torsion_terms, the Newtonian limit should fix some combination of the bi's
and the ci's. By analogy with the Einstein and ECSK theories, I would
naively expect that = + ey = 1. However, the theofy being investigated-

by Hehl, Ne'eman, Nitsch and Von der Heyde has ¢, = ¢, =b, =0, b, = -1,

1 2 3 2
and bl = 2, and yet still has a long range Newtonian limit.

The field equations for Lagrangian (109) may be obtained by varying
R explicitly and using equations (76) and (77) of Thedrem V.2 for the

remaining terms.
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equation is

g hcz Ae a . ﬁcz ( L GaOl + e, éaa)
8nL ¢ 8l
fic A a3 1 a s »
5 —= - =
T al(R . ea R R)
ﬁc - Au'\) A Aua ~ a A'!j.\) ~
s 37 aZ(R R pve R Rua + 5 ©o R Uv)
il AKAlg 2 1 a AKAUV ~
s % _ =
4w 3(R Rxlua 4 o Kluv)
e AV A 23U » 1 a AVu a
s == = .
S a4(R R v R Rna + 7 €4 R RUv)
fic ~UakA 1 a suvka
s 4w S(R leua A ea R RKluv)
fic sKaiy ~KUAa A 1 a akudv
s 8 6(R Rﬁhua - RKAua + 2 %u R RKAuv)
gils c _a Y B a Ye 1 _a._.Y B 8§
2 bl(eu eB VcQ Y € VcQ y 2 €a Q v8 Q B )
8wk
‘ﬁcb(vqac_OKan +}-eaQKqu )
4WL2 2Y¢ta : Kue 4 o KUV
fic [a el , fac] k 1  a pxv
b, (V Q +Q Q + )
4?L2 3V et o K ca o KUV
a )
ty . ‘ . . {(112)




Tne Cartan equation is

_ s le o d]

ot
™~
=
wu
[N

+ S %y 2 &Y Vd(ﬁu[ch] _ ﬁYIc-ud])
fic BS v T
2°1 8 Q ylo eG]

) c
- b8 Qg

BS, ¢ c
- 238 (R = Qe )

=" ¢ | | | (113)
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In deriving and studying these equations it is useful to recall that

_ L2 __1 _ab }
Ve = A= 8 Qe * Qg ~ O

bac)’. - = (114)

0% =2 - A =" ve®-e" ve®. ' - {115)

Notice that the field equations are linear in the second derivatives of

pa’ Further, if Cqy =b, = b2 =h f

’ . . . a - - .
then there are no second derivatives of e, » while "if a, = 0, i=1... 6,

then there are no second derivatives of TqBa'

From Theorem V.3, Eaa and CBaa satisfy equ;tions (95} and (96) anﬁ
there are automatic N0ether conservation laws. In'fact-si#ce Eaa and Ceaa
satisfy (95) and (96) for arbitrary values of A, ai;.bi, and s each term
B

in Eaa together with the corresponding term in C aa must satisfy (95) and
{96) séparately. Upon computing Eas’ notice that the coefficients of A4,
¢y and aq are symmetric in o and 8. Hence, in order to avoid separate

conservation of spin and orbital angular momentum, at least one of the

remaining constants, a;» bi or c, must be non-zero.
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e. Yang-Mills Analogy
The Lagrangian (109) still représents a large class of
theories. It is desirable to investigate all of those theories; but one
might use intuition to pick.out a theory to study first. Since the Yang--

Mills gauge theories are quantizable, one is led to ask which gravitational

.Lagrangian is most analogous to the Yang~Mills Lagrangian. I considered

this question in Section II.5 and concluded that the Yang~-Mills gravi-

tational Lagrangian for a metric-~Cartan connection theory is

fc
167l

o .ab fie Aa ~R ab
2 b2 Q ab Qa - R Bab R )
16waG

) (116)

It is generally agreed that the curvature squared term is the appropriate
Yang—Mills Lagrangian for the homogeneous part of the gravitational gauge
group (0(3,1,R) or SL(2,C) or etc.). There is no such agreement that the
torsion squared term is the appropriate Yang—Mills'Lagrangian for the
inhomogeneous part (the translation group or the diffeomorphism group or
the coordinate transformation group).

In fact, the curvature squared term by itself is the gravitational
Lagrangian of Yang's theory of gravity. Fairchild has shown that this
theory does not have a saﬁisfactory Newtonian limit. This 18 not surprising
since the Newtonian gravitational constant, G = LZCB/ﬁ, does not appear in.
the Lagrangian. In order words, there is no length scale, L, in the problem.
4 length scale should come from the Lagrangian for the translation group.

I originally tried to use R instead of Quab Qaab as thg Yang~Mills
Lagrangian for the translation group. (The justification is given'in

Section IX.5.) However, as shown in Section V.3c, that Lagrangian leads to

separate conservation of spin and orbital angular momentum.
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I next tried to use ﬁ instgad of Qaab Qaab. This is the iagrangian
considered by Mansouri and Chang {1976] and Fairchild [19773. My results
on-this theory appear in Chapter VI. |

1 dowrcongider (116) as the Lagrangian most analogous to the Yang-
Mills Lagrangian but I have not begun to iﬁvestigate that theory.-

Recently, Hehl, Ne'eman, Nitsch and von der Heyde [1978] have argued

that the Lagrangian,

= fic @ ¥6 _ o oY 8 _ _Be s ~B ab
b= o 7 Qs % 72 Qo Uy ) " Tgna Rpap N 0 D

is the most analogous to the Yang~Mills Lagrangian. Théy‘show that in
the weak field limit this theory has a long range Newtonian potential and

a short range confining potential.




250

f. Unique Gravipational Ground State
It is desirable that a theory of gravity have a locally
unique vﬁcuum-solution which is spatially homogeneous, isotropic and
parity-invariant. This solution would be regarded as the ground state
of thé gravitational field. By "locally unique'" I mean that the solution
is unique up to identifications. Furthermore, it is desirable that this
"solution be Minkowski space so that the ground state would have mo
gravitational field. (For the Einstein theory with a cosmological con-
stant, the ground state is de Sitter space, which has tidal forces.)
These requirements will Ee satisfied if the theory of gravity has a
Birkhoff theorem which says that the only 0(3)-spherically éymmetric
vacuum solution is Schwarzschild. This follows because any spatially
homogeﬁéous, isotropic and parity-invariant sclution would have to be
0(3)-spherically symmetric about every point; hence Schwarzschild about
every point; hence Mink&wski. . |
All of this is in contrast to the theofy investigated by Horowitz
and Wald, who showed that their field equations have homogeneous, isotropic

vacuum - solutions in addition to Minkowski.
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g. Quantum Theory
At present there'is no quantum theory qf gravity. I
-consider the search for.a quantum theory to be the moét important reason
to invesFigate theories of g?avity oﬁher than Einstein's. Thé usual
method in this search is to-quantize a classical theory by pérturbative
techniques and then to-check that the resulting quaﬁtum theory is.unitary
and renormalizable.’ Einstein's theory is ﬁﬁitary but non-renormalizable.
Recently, Stelle [1977 ] has demonstrated thé feﬁormalizability 6f

the theory of gravity based on the Lagrangian,

Be Rraf RV

L=-5-—
16mL° [

-BRR .~ (118)

In the contex; of metric theories, this is the most'general scalar Lagrangian
which is a quadratic.polyﬁomial in the Christoffei cﬁfvature (except for the
additiqu of a cosmological constant). Unfortunately, Stelle's theory is
non—unitary,essentially because the field,equatioﬁs contain third and fourth
derivatives of the métfic;

On the dther hand, in the context of metric-Cartan connection theories,
the Lagrangian (109) is the most general scalar Lagrangian which is a
quadratic polynomial in the Cartan curvature, a quadratic polynomial in the
torsion éﬁd a linear polynomizl in the Cﬁristoffel curvature., Regarded as

o » o . -
functions of the frame, 6 a’ and the connection, I » the field equations

Be
(112) and (113) contain no higher than second derivatives of the frame and

connection. WHence, the quantum theory based on Lagrangian (109) with e“a

o . .
and T 8c as variables, may be unitary.

At the same time, regarded as a function of the metric, g ., and the

ab

defect, 32 , the Lagrangian (109) reduces to the Stelle Lagrangian for the

be

metric, coupled to a Lagrangian for the defect. Thus the quantum theory

based on Lagrangian {(109) with &b and 22 o 38 variables, has a chance of

b

being rencrmalizable.
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There is a danger here. It is well known that a changé of variables
in a classical theory can lead to iﬁequivalent'quantum theories. Theorem
V.2 shows that Lagrangian (109) yields the same set of classical solutions
whether the variables are chosen either as e“a and Tuﬁc or as gab and Aabc'

It is far from obvious that these two sets of variables lead to equivalent

. quantum theories, However, recall that for the Yang-Mills theory, unitarity

" and renormalizability were proven in different gauges and then proven to be

gauge invariant properties of the quantum theory. Perhaps in the metrie-
. . . .q . .0
Cartan connection theories it may be possible to prove unitarity using 6 a
' a a
to eno i ilit sin and A~
and T Be? prove T rmalizability u g 8, an A be

that these properties are invariant under this specific change of variables.

,» and then to prove

I hopé to return to this problem in the future.




